Mass conservation and continuity equations !!!

In the absence of sources/sinks it 1s possible to attain formal local
mass conservation in models based on the volume density
continuity equation.

This 1s generally NOT the case if the advection equation 1s used to
forecast the mixing ratio. This 1s because one needs to evaluate the
mass as a product of two separate numerical forecasts: one for the
mixing ratio (¢,) and another for the dry air density (p,) and then
evaluate p, = ¢,p, .

The problem 1s that two different numerical approximations have
to be used since 1t 1s two different equations that are solved: the
advection equation and the continuity equation.



Mass conservation

Strategies one can follow in order to obtain formal mass conservation:

* Flux based Eulerian schemes (e.g. Bott, Easter)

* Flux based semi-Lagrangian (e.g. Leonard, Lin .

and Rood, Xiao et al. (CIP)) > Finite volume
methods

* Cell integrated semi-Lagrangian schemes (e.g.

Rancic, Machenhauer et al., Lauritzen
(CSLAM)) ~

 Partition of unity based semi-Lagrangian
schemes (Kaas (LMCSL))

* Full Lagrangian mass conservation is also
possible (total mass of all Langrangian particles
1s conserved).



Finite volume methods

Integro- diffential forms of the continuity equation (here omitting

dissipative and source/sink terms)

Eulerian form (fixed control volume AV):

OAVp O
LS pav =[], V-(ovsar = ~§f oV -nda

Lagrangian form (Lagrangian control volume oV):

< (5vp)=([]], pav)=0



Flux based finite volume methods

Example in one dimension. Eulerian form of the integro-differential
form

BABX_tﬁ = —(F(x+Ax,t)— F(x,1))

where
F(x,t)=p(x,t)u(x,t)

Integration 1n time of the above equation. Example in one dimension
(1.e. density 1s a function of location x and time ¢):
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Flux based finite volume methods

Example in one dimension (cont).
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Cell integrated finite volume methods

Example in one dimension (cont).
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Equivalence of cell integrated and flux based
finite volume methods

But the two are 1dentical since:
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Cell integrated finite volume methods:

Eulerian arrival cell
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Cell integrated semi-Lagrangian scheme
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Cell integrated semi-Lagrangian scheme

Applying the Gauss-Green theorem one can convert surface
integrals 1nto line-integrals (Lauritzen)

//w fe(z,y) dxdy = jéw Pdr+ Qdy




The LMCSL approach: A simple modification of
the advection equation by applying a partition of
unity principle!



Locally mass conserving semi-Lagrangian (LMCSL)
scheme:

Explicit forecast in grid point & :
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and A, 1s the volume represented by the £'th Eulerian grid point.



Semi Lagrangian scheme
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LMCSL (continued):

Formally mass conserving :
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Divergence 1s defined implicitly from the weighted weights, 1.e. by
the trajectories:

1 K Reference:
) 1 _ Z 1;“/ Kaas, E, 2008: A simple and efﬁcient locally
LM I A f k,l mass conserving semi-Lagrangian transport
/ scheme, Tellus, 60A, 305-320



Generalisation to three dimensions. Possible
strategies:

Introducing a Lagrangian or a quasi-Lagrangian vertical
coordinate

Use a purely flux based transport in the vertical (i.e. an extra term
on the right hand side representing mass flux convergence in the
vertical)

Use cascade interpolation in the vertical, 1.e. perform a complete
transport of density in the vertical, including divergence effects.
Then perform the horizontal transport (or visa versa)



eneralisation to three dimensions.
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ETEX experiment
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Numerical mixing.

Exact solution one revolution, no chemistry "Exact" solution, v=0, urban chemistry

correponds to doing chemistry
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Numerical mixing.

Exact solution one revolution, no chemistry "Exact" solution, v=0, urban chemistry

LMCSL solution one revolution, urban chemistry

But in the real world there is mixing!
@ Depends on meteorological conditions (flow). If strong shear, yes. If linear flow, no!

@ Two modeling philosophies: 1. Implicit numerical diffusion in scheme represents
physical diffusion. 2. Diffusion is added explicitly. In any case: The resulting
diffusion should match the physical diffusion.

E.g., a fully Lagrangian method needs explicit diffusion operators;
traditional finite-volume methods may need it.



What matters for chemistry

@ Relative concentration is the important factor for chemistry (reactions between
tracers are controlled by relative concentrations!).

@ This is more general than preservation of linear correlations: g1 = A+ Bq»

@ Some chemical processes are highly non-linear (e.g., NOx, O3, example on
previous slide)
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Wind-mass inconsistency

Assume one require strict mass conservation. Then using a
mass conservative numerical technique to solve the volume
density continuity for a tracer in spatial cell £ and at time step »

gives
('Ot )k

Now the mixing ratio required for chemical calculations should
be evaluated as:

Y /e,

Problem: if we did not use exactly the same numerical scheme
to forecast the the tracer density and the dry air density we
commit an error, which may evolve seriously (e.g. Jockel et al.
2001). Special fixers are required.



Monotonic filters and flux limiters

P Sy ———... e

cell index: i—1 [ i+ 1

General 1dea in finite volume method approaches: Modify the
subgrid cell representation to avoid the problem. (here Colella

and Woodward (1984))



LMCSL solution, 6 rotations
(min,max = -0.046 , 1.126)
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Additional reading

Durran, D.R. 2010: Numerical Methods for Fluid Dynamics. Springer, ISBN
978-1-4419-6411-3

"COMPUTATIONAL METHODS FOR THE ATMOSPHERE AND THE OCEANS” published by
Elsevier. Editors: Roger Temam, Joe Tribbia and Philippe Ciarlet. 784 pages. ISBN

978-0-444-51893-4.

THANK YOU



