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On-line and off-line atmospheric
chemistry transport (ACT) models

On-line chemistry permits explicit simulation of feedbacks
between atmospheric dynamic and chemical processes.

On different time-scales the following issues are particularly

relevant:

* CO, and CH, cycles (well mixed greenhouse gases)

* O, (effects in both the short and longwave domain)

* Direct effect of aerosols (mainly shortwave)

* Indirect/semi-direct aerosol forcing (coupling to clouds
and related radiation)



Applications

Air quality predictions (e.g. Enviro HIRLAM)

Earth system (climate) simulations (global and regional
models, e.g. HadCM3, ECHAMS6, RegClim).
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Governing equations

Repetition from Sergy1’s presentation



Exact governing dynamical equations

Navier-Stokes equation (Unit mass
version of ‘“Newton's second law)
expressed in  the  accelerated
coordinate system of the Earth

The first equation of thermodynamics

Continuity equation for dry air

Continuity equation for various tracers
(e.g. water vapour, liquid and solid
water, SO,, 137Cs, particles ...)

Equation of state for ideal gases (no
particle density included in p).
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Continuity equations

Conservation of mass or conservation of mixing ration?

Conservation of dry air mass. The volume density continuity equation:
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Continuity equations

Chemistry works on mixing ratio - NOT on density!

q = Ll mixing ratio of chemical tracer ¢

Py

From the volume density continuity equation for tracer t we have:
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Continuity equations

Using the continuity equation for dry air, and re-ordering
terms we get the advection equation for mixing ratio:
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Desired properties for numerical solutions to the continuity equation

Locally mass conserving

Shape conserving (positive definite, monotonic and non-
oscillatory)

Avoid numerical mixing of tracers

Transportive and local (solution must follow characteristics)
Consistent (avoid mass-wind inconsistency problem)
Conserving a constant field in a non-divergent flow

Computationally efficient (1.e. high accuracy for a given
computational resource). E.g numerically stable for long time
steps



Semi-Lagrangian integration
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Semi-Lagrangian approximation to the
continuity equation
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Traditional semi-Lagrangian (SL) scheme. Here solving
the volume density continuity equation as an example:

Explicit forecast in grid point & :
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Semi-Lagrangian approximation to the continuity
equation
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E.g. cubic (third order) interpolating scheme for the case of
pure 1-D advection of a tracer:
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Semi Lagrangian scheme for solving the volume
density continuity equation (two dimensions)
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Bicubic interpolation
requires 4x4 = 16
points.







Semi Lagrangian scheme
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